Existence and Cardinality of k-Normal Elements in Finite Fields
نویسندگان
چکیده
Normal bases in finite fields constitute a vast topic of large theoretical and practical interest. Recently, $k$-normal elements were introduced as natural extension normal elements. The existence the number fixed field are both open problems full generality, comprise promising research avenue. In this paper, we first formulate general lower bound for elements, assuming that they exist. We further derive new condition using factorization polynomial $x^m-1$ into cyclotomic polynomials. Finally, provide an $\fqm$ with non-maximal but high multiplicative order group units field.
منابع مشابه
Normal bases and primitive elements over finite fields
Let q be a prime power, m ≥ 2 an integer and A = ( a b c d ) ∈ GL2(Fq), where A 6= ( 1 1 0 1 ) if q = 2 and m is odd. We prove an extension of the primitive normal basis theorem and its strong version. Namely, we show that, except for an explicit small list of genuine exceptions, for every q, m and A, there exists some primitive x ∈ Fqm such that both x and (ax+b)/(cx+d) produce a normal basis ...
متن کاملTHE CARDINALITY OF SETS OF k-INDEPENDENT VECTORS OVER FINITE FIELDS By S.B. Damelin
A set of vectors is k-independent if all its subsets with no more than k elements are linearly independent. We obtain a result concerning the maximal possible cardinality Indq(n, k) of a k-independent set of vectors in the n-dimensional vector space Fn q over the finite field Fq of order q. Namely, we give a necessary and sufficient condition for Indq(n, k) = n + 1.
متن کاملOn the existence of some specific elements in finite fields of characteristic 2
Article history: Received 31 August 2011 Revised 12 April 2012 Accepted 16 April 2012 Available online 21 April 2012 Communicated by D. Panario
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-68869-1_15